
COP 4710: Database Systems (Chapter 19) Page 1 Mark Llewellyn

COP 4710: Database Systems

Fall 2009

Chapter 19 – Normalization

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop4710/fall2009

COP 4710: Database Systems (Chapter 19) Page 2 Mark Llewellyn

• Normalization is a technique for producing a set of

relations with desirable properties, given the data

requirements of the enterprise being modeled.

• The process of normalization was first developed by

Codd in 1972.

• Normalization is often performed as a series of tests on a

relation to determine whether it satisfies or violates the

requirements of a given normal form.

• Codd initially defined three normal forms called first

(1NF), second (2NF), and third (3NF). Boyce and Codd

together introduced a stronger definition of 3NF called

Boyce-Codd Normal Form (BCNF) in 1974.

Normalization

COP 4710: Database Systems (Chapter 19) Page 3 Mark Llewellyn

• All four of these normal forms are based on functional
dependencies among the attributes of a relation.

• A functional dependency describes the relationship
between attributes in a relation.

– For example, if A and B are attributes or sets of attributes of
relation R, B is functionally dependent on A (denoted A  B), if
each value of A is associated with exactly one value of B.

• In 1977 and 1979, a fourth (4NF) and fifth (5NF) normal
form were introduced which go beyond BCNF.
However, they deal with situations which are quite rare.
Other higher normal forms have been subsequently
introduced, but all of them are based on dependencies
more involved than functional dependencies.

Normalization (cont.)

COP 4710: Database Systems (Chapter 19) Page 4 Mark Llewellyn

• A relational schema consists of a number of attributes, and a
relational database schema consists of a number of relations.

• Attributes may grouped together to form a relational schema based
largely on the common sense of the database designer, or by
mapping the relational schema from an ER model.

• Whatever approach is taken, a formal method is often required to
help the database designer identify the optimal grouping of attributes
for each relation in the database schema.

• The process of normalization is a formal method that identifies
relations based on their primary or candidate keys and the functional
dependencies among their attributes.

• Normalization supports database designers through a series of tests,
which can be applied to individual relations so that a relational
schema can be normalized to a specific form to prevent the possible
occurrence of update anomalies.

Normalization (cont.)

COP 4710: Database Systems (Chapter 19) Page 5 Mark Llewellyn

• The major aim of relational database design is to group attributes

into relations to minimize data redundancy and thereby reduce the

file storage space required by the implemented base relations.

• Consider the following relation schema:

Data Redundancy and Update Anomalies

staff# sname position salary branch# baddress

SL21 Kristy manager 30000 B005 22 Deer Road

SG37 Debi assistant 12000 B003 162 Main Street

SG14 Alan supervisor 18000 B003 163 Main Street

SA9 Traci assistant 12000 B007 375 Fox Avenue

SG5 David manager 24000 B003 163 Main Street

SL41 Anna assistant 10000 B005 22 Deer Road

staffbranch

COP 4710: Database Systems (Chapter 19) Page 6 Mark Llewellyn

• In general, the goal of a relational database design is to generate a set of
relation schemas that create an accurate representation of the real-world
situation that is being modeled.

– The design must also allow information to be stored without unnecessary
redundancy, yet also allow for that information to be retrieved efficiently.

• A technique that can be used to identify this set of suitable relational schemas
is called normalization.

• The process of normalization builds a set of schemas, each of which is in an
appropriate normal form.

• Normalization is a bottom-up approach to database design that begins by
examining the relationships between attributes.

• To determine if a relation schema is in one of the desirable normal forms,
additional information is required about the real-world scenario that is being
modeled. Most of this additional information is represented by a type of data
dependency known as a functional dependency.

Introduction To Normalization

COP 4710: Database Systems (Chapter 19) Page 7 Mark Llewellyn

Introduction To Normalization
• The process of normalization can be defined formally as:

• The process of normalization was first developed in the early 1970s by E.F. Codd.

• Normalization is most often performed as a series of tests on a relational schema to

determine whether it satisfies or violates the requirements of a given normal form.

• Codd initially proposed three normal forms called first (1NF), second (2NF), and third

(3NF). Subsequently, R. Boyce and Codd together introduced a stronger definition

for third normal form called Boyce-Codd Normal Form (BCNF).

• All four of these normal forms are based upon the concept of a functional dependency.

Higher normal forms that go beyond BCNF, such as fourth (4NF) and fifth (5NF), as

well as several others, have also subsequently been introduced. These higher normal

forms utilize other types of data dependencies and some of these apply to situations

that are quite rare. We will concentrate only on the first four normal forms and not

examine any of the higher normal forms.

Normalization: A technique for producing a set of relational schemas with
desirable properties given the data requirements pertaining to the real-world
situation that is being modeled.

COP 4710: Database Systems (Chapter 19) Page 8 Mark Llewellyn

Relationship Between Normal Forms
N1NF

1NF

2NF

3NF

BCNF

4NF

5NF

Higher Normal Forms

COP 4710: Database Systems (Chapter 19) Page 9 Mark Llewellyn

Introduction To Normalization

• The process of normalization is a formal method that

identifies relational schemas based upon their primary

or candidate keys and the functional dependencies that

exists amongst their attributes.

• Normalization is primarily a tool to validate and

improve a logical design so that it satisfies certain

constraints that avoid unnecessary duplication of data.

• Normalization is the process of decomposing relations

with anomalies to produce smaller, well-structured

relations.

COP 4710: Database Systems (Chapter 19) Page 10 Mark Llewellyn

Introduction To Normalization

• A well-structured relation contains minimal data

redundancy and allows users to insert, delete, and

update rows without causing data inconsistencies.

• Goal is to avoid anomalies

– Insertion Anomaly – adding new rows forces user to create

duplicate data.

– Deletion Anomaly – deleting rows may cause a loss of data

that would be needed for other future rows.

– Modification Anomaly – changing data in a row forces

changes to other rows because of duplication.

COP 4710: Database Systems (Chapter 19) Page 11 Mark Llewellyn

Example – Anomalies In A Relation

Question – Is this a relation? Answer – Yes: unique rows and no multivalued

attributes

Question – What’s the primary key? Answer – Composite: Emp_ID,

Course_Title

COP 4710: Database Systems (Chapter 19) Page 12 Mark Llewellyn

Anomalies in this Table

• Insertion – can’t enter a new employee without having the

employee take a class.

• Deletion – if we remove employee 140, we lose information about

the existence of a Tax Acc class.

• Modification – giving a salary increase to employee 100 forces us

to update multiple records.

Why do these anomalies exist?

Because there are two themes (entity types) into one

relation. This results in duplication, and an

unnecessary dependency between the entities

General rule of thumb: a table should not pertain to

more than one entity type

COP 4710: Database Systems (Chapter 19) Page 13 Mark Llewellyn

• First Normal Form (1NF): All multi-valued attributes have
been removed from the table. Only a single value (possibly
null) exists at the intersection of each row and column of the
table.

• Second Normal Form (2NF): All partial functional
dependencies have been removed. [Non-key attributes are
identified by only the full primary key.]

• Third Normal Form (3NF): All transitive functional
dependencies have been removed. [Non-key attributes are
identified by only the primary key.]

• Boyce-Codd Normal Form (BCNF): Any remaining anomalies
that result from functional dependencies have been removed.
[More than one primary key existed for the same non-key
attributes.]

Brief Overview Of The Steps in Normalization

COP 4710: Database Systems (Chapter 19) Page 14 Mark Llewellyn

Brief Overview Of The Steps in Normalization

Figure 5-22, page 212

COP 4710: Database Systems (Chapter 19) Page 15 Mark Llewellyn

• The design of a relational database should have included a
conceptual modeling step (producing an ER diagram) for the
enterprise (as we have done).

• This step was followed by a transformation process that
converted the ER diagram into a set of relational tables.

• The first step in the transformation process generated a table
(relation) for every multi-valued attribute for a given entity.

• This means that every table (relation) that was created was in
fact a relation and thus is in 1NF.

• In our earlier discussion of anomalies, the table was in 1NF but
was not a well-structured table as it contained certain
anomalies. Normalization will remove these anomalies.

Important Note

COP 4710: Database Systems (Chapter 19) Page 16 Mark Llewellyn

• A functional dependency is a constraint between two attributes (or sets of
attributes).

– For any relation R, attribute B is functionally dependent on attribute A if, for every
valid instance of A, that value of A uniquely determines the value of B.

– The functional dependency of B on A is denoted as: A → B.

• Example:

EMP_COURSE (Emp_ID, Course_Title, Date_Completed)

The relation instance shown on the right

satisfies the functional dependency

Emp_ID, Course_Title → Date_Completed

Functional Dependencies

Emp_ID Course_Title Date_Completed

100 Excel 4/1/2006

100 Access 5/20/2005

140 Tax Acct. 3/14/2000

110 Visual Basic 6/6/2006

110 C++ 11/16/2004

150 Excel 6/27/2003

150 Access 8/12/2002

determinant

consequent

COP 4710: Database Systems (Chapter 19) Page 17 Mark Llewellyn

A 1NF, But Not Well-structured, Table

COP 4710: Database Systems (Chapter 19) Page 18 Mark Llewellyn

Anomalies in this Table

• Insertion – if new product is ordered for order 1007 of

existing customer, customer data must be re-entered,

causing duplication.

• Deletion – if we delete the Dining Table from Order

1006, we lose information concerning this item's finish

and price.

• Update – changing the price of product ID 4 requires

update in several records.

COP 4710: Database Systems (Chapter 19) Page 19 Mark Llewellyn

Functional Dependencies in this Table

COP 4710: Database Systems (Chapter 19) Page 20 Mark Llewellyn

Definition of 2NF

• A relation is in 2NF if it is in 1NF and every non-key
attribute is fully functionally dependent on the
ENTIRE primary key.

– Every non-key attribute must be defined by the entire
key, not by only part of the key. (A partial
dependency exists whenever a non-key attribute is
functionally dependent on only a portion of the
primary key.)

– No partial functional dependencies exist in a 2NF
relation.

COP 4710: Database Systems (Chapter 19) Page 21 Mark Llewellyn

Why INVOICE Table Is Not In 2NF

Order_ID  Order_Date, Customer_ID, Customer_Name, Customer_Address

Product_ID  Product_Description, Product_Finish, Unit_Price

Therefore, NOT in 2nd Normal Form

COP 4710: Database Systems (Chapter 19) Page 22 Mark Llewellyn

Converting A N2NF Relation Into A 2NF Relation

• To convert a relation containing partial dependencies

into a 2NF relation, the following steps are required:

1. Create a new relation for each primary key attributed (or

combinations of attributes) that is a determinant in a partial

dependency. That attribute is the primary key in the new

relation.

2. Move the non-key attributes that are dependent on this

primary key attribute (or attributes) from the old relation

into the new relation.

COP 4710: Database Systems (Chapter 19) Page 23 Mark Llewellyn

Converting A N2NF Relation Into A 2NF Relation

EXAMPLE

COP 4710: Database Systems (Chapter 19) Page 24 Mark Llewellyn

Consequences of the Definition of 2NF

• A 1NF relation will be in 2NF if any of the
following conditions hold:

1. The primary key consists of only one attribute. By
definition, there cannot be a partial dependency in such a
relation.

2. No non-key attributes exists in the relation (all of the
attributes in the relation are part of the primary key). By
definition there are no functional dependencies (other than
the trivial ones) in such a relation.

3. Every non-key attribute is functionally dependent on the
full set of primary key attributes.

COP 4710: Database Systems (Chapter 19) Page 25 Mark Llewellyn

Definition of 3NF

• A relation is in 3NF if it is in 2NF and every no transitive
dependencies exist.

– A transitive dependency in a relation is a functional dependency
between two (or more) non-key attributes.

– PrimaryKey → A→ B. Order_ID → Customer_ID

-and-

Customer_ID → Customer_Name

Customer_ID → Customer_Address

COP 4710: Database Systems (Chapter 19) Page 26 Mark Llewellyn

Converting A N3NF Relation Into A 3NF Relation

• To convert a relation containing transitive
dependencies into a 3NF relation, the following
steps are required:

1. For each non-key attributed (or set of attributed) that is a
determinant in the relation, create a new relation. That
attribute (or set of attributes) becomes the primary key in
the new relation.

2. Move all of the attributes that are functionally dependent on
the attribute from the old relation into the new relation.

3. Leave the attribute (which serves as the primary key in the
new relation) in the old relation to serve as a foreign key
that allows an association between the two relation.

COP 4710: Database Systems (Chapter 19) Page 27 Mark Llewellyn

Converting A N3NF Relation Into A 3NF Relation

EXAMPLE

COP 4710: Database Systems (Chapter 19) Page 28 Mark Llewellyn

• The examples of three types of update anomalies suffered
by the relation in the previous few pages demonstrate that
its decomposition relations avoids such anomalies.

• There are two important properties associated with the
decomposition of a larger relation into a set of smaller
relations.

1. The lossless-join property ensures that any instance of the
original relation can be identified from corresponding instances
of the smaller relations.

2. The dependency preservation property ensures that a constraint
on the original relation can be maintained by simply enforcing
some constraint on each of the smaller relations. In other words,
the smaller relations do not need to be joined together to check if
a constraint on the original relation is violated.

Data Redundancy and Update Anomalies (cont.)

COP 4710: Database Systems (Chapter 19) Page 29 Mark Llewellyn

• Consider the following relation schema SP and its

decomposition into two schemas S1 and S2.

The Lossless Join Property

s# p# qty

S1 P1 10

S2 P2 50

S3 P3 10

SP

s# qty

S1 10

S2 50

S3 10

p# qty

P1 10

P2 50

P3 10

S1 S2

s# p# qty

S1 P1 10

S1 P3 10

S2 P2 10

S3 P1 10

S3 P3 10

2S1S 

These are extraneous tuples which did not

appear in the original relation. However, now we

can’t tell which are valid and which aren’t. Once

the decomposition occurs the original SP relation

is lost.

COP 4710: Database Systems (Chapter 19) Page 30 Mark Llewellyn

Example

R = (A, B, C)

F = {AB  C, C  A}

 = {(B, C), (A, C)}

Clearly C  A can be enforced on schema (A, C).

How can AB  C be enforced without joining the two

relation schemas in ? Answer, it can’t, therefore the fds

are not preserved in .

Preservation of the Functional Dependencies

COP 4710: Database Systems (Chapter 19) Page 31 Mark Llewellyn

• For our discussion on functional dependencies (fds),
assume that a relational schema has attributes (A, B, C,
..., Z) and that the whole database is described by a single
universal relation called R = (A, B, C, ..., Z). This
assumption means that every attribute in the database has
a unique name.

• A functional dependency is a property of the semantics of
the attributes in a relation. The semantics indicate how
attributes relate to one another, and specify the functional
dependencies between attributes.

• When a functional dependency is present, the
dependency is specified as a constraint between the
attributes.

Functional Dependencies

COP 4710: Database Systems (Chapter 19) Page 32 Mark Llewellyn

• Consider a relation with attributes A and B, where attribute B is

functionally dependent on attribute A. If we know the value of A

and we examine the relation that holds this dependency, we will find

only one value of B in all of the tuples that have a given value of A,

at any moment in time. Note however, that for a given value of B

there may be several different values of A.

• The determinant of a functional dependency is the attribute or group

of attributes on the left-hand side of the arrow in the functional

dependency. The consequent of a fd is the attribute or group of

attributes on the right-hand side of the arrow.

– In the figure above, A is the determinant of B and B is the consequent of

A.

Functional Dependencies (cont.)

A BB is functionally

dependent on A

COP 4710: Database Systems (Chapter 19) Page 33 Mark Llewellyn

• Look back at the staff relation on page 6. The functional dependency

staff#  position clearly holds on this relation instance. However,

the reverse functional dependency position  staff# clearly does

not hold.

– The relationship between staff# and position is 1:1 (from staff to

position) – for each staff member there is only one position. On the

other hand, the relationship between position and staff# is 1:M – there

are several staff numbers associated with a given position.

• For the purposes of normalization we are interested in identifying

functional dependencies between attributes of a relation that have a

1:1 relationship.

Identifying Functional Dependencies

staff# position
position is functionally

dependent on staff#

position staff# staff# is NOT functionally

dependent on position

COP 4710: Database Systems (Chapter 19) Page 34 Mark Llewellyn

• When identifying fds between attributes in a relation it is important

to distinguish clearly between the values held by an attribute at a

given point in time and the set of all possible values that an attributes

may hold at different times.

• In other words, a functional dependency is a property of a relational

schema (its intension) and not a property of a particular instance of

the schema (extension).

• The reason that we need to identify fds that hold for all possible

values for attributes of a relation is that these represent the types of

integrity constraints that we need to identify. Such constraints

indicate the limitations on the values that a relation can legitimately

assume. In other words, they identify the legal instances which are

possible.

Identifying Functional Dependencies (cont.)

COP 4710: Database Systems (Chapter 19) Page 35 Mark Llewellyn

• Let’s identify the functional dependencies that hold using the relation
schema staffbranch shown on page 5 as an example.

• In order to identify the time invariant fds, we need to clearly
understand the semantics of the various attributes in each of the
relation schemas in question.

– For example, if we know that a staff member’s position and the branch
at which they are located determines their salary. There is no way of
knowing this constraint unless you are familiar with the enterprise, but
this is what the requirements analysis phase and the conceptual design
phase are all about!

staff#  sname, position, salary, branch#, baddress

branch#  baddress

baddress  branch#

branch#, position  salary

baddress, position  salary

Identifying Functional Dependencies (cont.)

COP 4710: Database Systems (Chapter 19) Page 36 Mark Llewellyn

• It is common in many textbooks to use diagrammatic notation for

displaying functional dependencies (this is how your textbook does

it). An example of this is shown below using the relation schema

staffbranch shown on page 5 for the fds we just identified as

holding on the relational schema.

staff#  sname, position, salary, branch#, baddress

branch#  baddress

baddress  branch#

branch#, position  salary

baddress, position  salary

Identifying Functional Dependencies (cont.)

staff# sname position salary branch# baddress

staffbranch

COP 4710: Database Systems (Chapter 19) Page 37 Mark Llewellyn

• As well as identifying fds which hold for all possible values of the

attributes involved in the fd, we also want to ignore trivial functional

dependencies.

• A functional dependency is trivial iff, the consequent is a subset of

the determinant. In other words, it is impossible for it not to be

satisfied.

– Example: Using the relation instances on page 6, the trivial

dependencies include:

{ staff#, sname}  sname

{ staff#, sname}  staff#

• Although trivial fds are valid, they offer no additional information

about integrity constraints for the relation. As far as normalization is

concerned, trivial fds are ignored.

Trivial Functional Dependencies

COP 4710: Database Systems (Chapter 19) Page 38 Mark Llewellyn

• In summary, the main characteristics of functional

dependencies that are useful in normalization are:

1. There exists a 1:1 relationship from the attribute(s) in the

determinant to the attribute(s) in the consequent.

2. The functional dependency is time invariant, i.e., it holds in all

possible instances of the relation.

3. The functional dependencies are nontrivial. Trivial fds are

ignored.

Summary of FD Characteristics

COP 4710: Database Systems (Chapter 19) Page 39 Mark Llewellyn

• We’ll denote as F, the set of functional dependencies that

are specified on a relational schema R.

• Typically, the schema designer specifies the fds that are

semantically obvious; usually however, numerous other

fds hold in all legal relation instances that satisfy the

dependencies in F.

• These additional fds that hold are those fds which can be

inferred or deduced from the fds in F.

• The set of all functional dependencies implied by a set of

functional dependencies F is called the closure of F and is

denoted F+.

Inference Rules for Functional Dependencies

COP 4710: Database Systems (Chapter 19) Page 40 Mark Llewellyn

• The notation: F ⊨ X  Y denotes that the functional

dependency X  Y is implied by the set of fds F.

• Formally, F+  {X  Y | F ⊨ X  Y }

• A set of inference rules is required to infer the set of fds

in F+.

– For example, if I tell you that Kristi is older than Debi and that

Debi is older than Traci, you are able to infer that Kristi is older

than Traci. How did you make this inference? Without thinking

about it or maybe knowing about it, you utilized a transitivity

rule to allow you to make this inference.

• The next page illustrates a set of six well-known

inference rules that apply to functional dependencies.

Inference Rules (cont.)

COP 4710: Database Systems (Chapter 19) Page 41 Mark Llewellyn

IR1: reflexive rule – if X  Y, then X  Y

IR2: augmentation rule – if X  Y, then XZ  YZ

IR3: transitive rule – if X  Y and Y  Z, then X  Z

IR4: projection rule – if X  YZ, then X  Y and X  Z

IR5: additive rule – if X  Y and X  Z, then X  YZ

IR6: pseudotransitive rule – if X  Y and YZ  W, then XZ  W

• The first three of these rules (IR1-IR3) are known as

Armstrong’s Axioms and constitute a necessary and sufficient

set of inference rules for generating the closure of a set of

functional dependencies.

Inference Rules (cont.)

COP 4710: Database Systems (Chapter 19) Page 42 Mark Llewellyn

• Given R = (A,B,C,D,E,F,G,H, I, J) and

F = {AB  E, AG  J, BE  I, E  G, GI  H}

does F ⊨ AB  GH?

Proof

1. AB  E, given in F

2. AB  AB, reflexive rule IR1

3. AB  B, projective rule IR4 from step 2

4. AB  BE, additive rule IR5 from steps 1 and 3

5. BE  I, given in F

6. AB  I, transitive rule IR3 from steps 4 and 5

7. E  G, given in F

8. AB  G, transitive rule IR3 from steps 1 and 7

9. AB  GI, additive rule IR5 from steps 6 and 8

10. GI  H, given in F

11. AB  H, transitive rule IR3 from steps 9 and 10

12. AB  GH, additive rule IR5 from steps 8 and 11 - proven

Example Proof Using Inference Rules

Practice Problem

Using the same set F, prove

that F ⊨ BE  H

Answer: on next page/

COP 4710: Database Systems (Chapter 19) Page 43 Mark Llewellyn

• Given R = (A,B,C,D,E,F,G,H, I, J) and

F = {AB  E, AG  J, BE  I, E  G, GI  H}

does F ⊨ BE  H?

Proof

1. BE  I, given in F

2. BE  BE, reflexive rule IR1

3. BE  E, projective rule IR4 from step 2

4. E  G, given

5. BE  G, transitive rule IR3 from steps 3 and 4

6. BE  GI, additive rule IR5 from steps 1 and 5

7. GI  H, given in F

8. BE  H, transitive rule IR3 from steps 6 and 7 - proven

Proof For Practice Problem

COP 4710: Database Systems (Chapter 19) Page 44 Mark Llewellyn

• Another way of looking at the closure of a set of fds F is:
F+ is the smallest set containing F such that Armstrong’s
Axioms cannot be applied to the set to yield an fd not in
the set.

• F+ is finite, but exponential in size in terms of the number
of attributes of R.

– For example, given R=(A,B,C) and F = {AB C, C  B}, F+

will contain 29 fds (including trivial fds).

• Thus, to determine if a fd X  Y holds on a relation
schema R given F, what we really need to determine is
does F ⊨ X  Y, or more correctly is XY in F+?
However, we want to do this without generating all of F+

and checking to see if XY is in that set.

Determining Closures

COP 4710: Database Systems (Chapter 19) Page 45 Mark Llewellyn

• The technique for this is to generate not F+ but rather X+,

where X is any determinant from a fd in F. An algorithm

for generating X+ is shown below.

• X+ is called the closure of X under F (or with respect to

F).

Determining Closures (cont.)

Algorithm Closure {returns X+ under F}

input: set of attributes X, and a set of fds F

output: X+ under F

Closure (X, F)

{

X+  X;

repeat

oldX+  X+;

for every fd W Z in F do

if W  X+ then X+  X+  Z;

until (oldX+ = X+);

}

Algorithm Closure

COP 4710: Database Systems (Chapter 19) Page 46 Mark Llewellyn

Given F = {A  D, AB  E, BI  E, CD  I, E  C},
Find (AE)+

pass 1

X+ = {A, E}
using A  D, A  X+, so add D to X+, X+ = {A, E, D}
using AB  E, no
using BI  E, no
using CD  I, no
using E  C, E X+, so add C to X+, X+ = {A, E, D, C}
changes occurred to X+ so another pass is required

pass 2

X+ = {A, E, D, C}
using A  D, yes, but no changes
using AB  E, no
using BI  E, no
using CD  I, CD  X+, so add I to X+, X+ = {A, E, D, C, I}
using E  C, yes, but no changes
changes occurred to X+ so another pass is required

Example Using Algorithm Closure

COP 4710: Database Systems (Chapter 19) Page 47 Mark Llewellyn

pass 3

X+ = {A, E, D, C, I}
using A  D, yes, but no changes
using AB  E, no
using BI  E, no
using CD  I, yes, but no changes
using E  C, yes, but no changes
no changes occurred to X+ so algorithm terminates

(AE)+ = {A, E, C, D, I}

This means that the following fds are in F+: AE  AECDI

Example Using Algorithm Closure Continues

COP 4710: Database Systems (Chapter 19) Page 48 Mark Llewellyn

• Once the closure of a set of attributes X has been

generated, it becomes a simple test to tell whether or not

a certain functional dependency with a determinant of X

is included in F+.

• The algorithm shown below will determine if a given set

of fds implies a specific fd.

Algorithm Member

Algorithm Member {determines membership in F+}

input: a set of fds F, and a single fd X  Y

output: true if F ⊨ X  Y, false otherwise

Member (F, X  Y)

{

if Y  Closure(X,F)

then return true;

else return false;

}

Algorithm Member

COP 4710: Database Systems (Chapter 19) Page 49 Mark Llewellyn

• A set of fds F is covered by a set of fds F (alternatively

stated as G covers F) if every fd in G is also in F+.

– That is to say, F is covered if every fd in F can be inferred from

G.

• Two sets of fds F and G are equivalent if F+ = G+.

– That is to say, every fd in G can be inferred from F and every fd

in F can be inferred from G.

– Thus F  G if F covers G and G covers F.

• To determine if G covers F, calculate X+ wrt G for each

X  Y in F. If Y  X+ for each X, then G covers F.

Covers and Equivalence of Sets of FDs

COP 4710: Database Systems (Chapter 19) Page 50 Mark Llewellyn

• Algorithm Member has a run time which is dependent on
the size of the set of fds used as input to the algorithm.
Thus, the smaller the set of fds used, the faster the
execution of the algorithm.

• Fewer fds require less storage space and thus a
corresponding lower overhead for maintenance whenever
database updates occur.

• There are many different types of covers ranging from
non-redundant covers to optimal covers. We won’t look
at all of them.

• Essentially the idea is to ultimately produce a set of fds G
which is equivalent to the original set F, yet has as few
total fds (symbols in the extreme case) as possible.

Why Covers?

COP 4710: Database Systems (Chapter 19) Page 51 Mark Llewellyn

• A set of fds is non-redundant if there is no proper subset

G of F with G  F. If such a G exists, F is redundant.

• F is a non-redundant cover for G if F is a cover for G and

F is non-redundant.

Non-redundant Covers

Algorithm Nonredundant {produces a non-redundant cover}

input: a set of fds G

output: a nonredundant cover for G

Nonredundant (G)

{

F  G;

for each fd X  Y  G do

if Member(F – {X  Y}, X  Y)

then F  F – {X  Y};

return (F);

}

Algorithm Nonredundant

COP 4710: Database Systems (Chapter 19) Page 52 Mark Llewellyn

Let G = {A  B, B  A, B  C, A  C}, find a non-redundant
cover for G.

F  G

Member({B  A, B  C, A  C}, A  B)

Closure(A, {B  A, B  C, A  C})

A+ = {A, C}, therefore A  B is not redundant

Member({A  B, B  C, A  C}, B  A)

Closure(B, {A  B, B  C, A  C})

B+ = {B, C}, therefore B  A is not redundant

Member({A  B, B  A, A  C}, B  C)

Closure(B, {A  B, B  A, A  C})

B+ = {B, A, C}, therefore B  C is redundant F = F – {B  C}

Member({A  B, B  A}, A  C)

Closure(A, {A  B, B  A})

A+ = {A, B}, therefore A  C is not redundant

Return F = {A  B, B  A, A  C}

Example: Producing a Non-redundant Cover

COP 4710: Database Systems (Chapter 19) Page 53 Mark Llewellyn

If G = {A  B, A  C, B  A, B  C}, the same set as before but
given in a different order. A different cover will be produced!

F  G

Member({A  C, B  A, B  C}, A  B)

Closure(A, {A  C, B  A, B  C})

A+ = {A, C}, therefore A  B is not redundant

Member({A  B, B  A, B  C}, A  C)

Closure(A, {A  B, B  A, B  C})

A+ = {A, B, C}, therefore A  C is redundant F = F – {A  C}

Member({A  B, B  C}, B  A)

Closure(B, {A  B, B  C})

B+ = {B, C}, therefore B  A is not redundant

Member({A  B, B  A}, B  C)

Closure(B, {A  B, B  A})

B+ = {B, A}, therefore B  C is not redundant

Return F = {A  B, B  A, B  C}

Example 2: Producing a Non-redundant Cover

COP 4710: Database Systems (Chapter 19) Page 54 Mark Llewellyn

• The previous example illustrates that a given set of

functional dependencies can contain more than one non-

redundant cover.

• It is also possible that there can be non-redundant covers

for a set of fds G that are not contained in G.

– For example, if

G = {A  B, B  A, B  C, A  C}

then F = {A  B, B  A, AB  C} is a non-redundant cover for G

however, F contains fds that are not in G.

Non-redundant Covers (cont.)

COP 4710: Database Systems (Chapter 19) Page 55 Mark Llewellyn

• If F is a non-redundant set of fds, this means that there are no “extra”

fds in F and thus F cannot be made smaller by removing fds. If fds

are removed from F then a set G would be produced where G ≢ F.

• However, it may still be possible to reduce the overall size of F by

removing attributes from fds in F.

• If F is a set of fds over relation schema R and X  Y F, then

attribute A is extraneous in X  Y wrt F if:

1. X = AZ, X  Z and {F – {X  Y}}  {Z  Y}  F, or

2. Y = AW, Y  W and {F – {X  Y}}  {X  W}  F

• In other words, an attribute A is extraneous in X  Y if A can be

removed from either the determinant or consequent without changing

F+.

Extraneous Attributes

COP 4710: Database Systems (Chapter 19) Page 56 Mark Llewellyn

Example:

let F = {A BC, B C, AB D}

attribute C is extraneous in the consequent of A BC

since A+ = {A, B, C, D} when F = F – {A  C}

similarly, B is extraneous in the determinant of AB D

since AB+ = {A, B, C, D} when F= F – {AB D}

Extraneous Attributes (cont.)

COP 4710: Database Systems (Chapter 19) Page 57 Mark Llewellyn

• Let F be a set of fds over schema R and let X  Y F.

X  Y is left-reduced if X contains no extraneous

attribute A.

• A left-reduced functional dependency is also called a full

functional dependency.

X  Y is right-reduced if Y contains no extraneous

attribute A.

X  Y is reduced if it is left-reduced, right-reduced, and

Y is not empty.

Left and Right Reduced Sets of FDs

COP 4710: Database Systems (Chapter 19) Page 58 Mark Llewellyn

• The algorithm below produces a left-reduced set of

functional dependencies.

Algorithm Left-Reduce

Algorithm Left-Reduce {returns left-reduced version of F}

input: set of fds G

output: a left-reduced cover for G

Left-Reduce (G)

{

F  G;

for each fd X Y in G do

for each attribute A in X do

if Member(F, (X-A)  Y)

then remove A from X in X Y in F

return(F);

}

Algorithm Left-Reduce

COP 4710: Database Systems (Chapter 19) Page 59 Mark Llewellyn

• The algorithm below produces a right-reduced set of

functional dependencies.

Algorithm Right-Reduce

Algorithm Right-Reduce {returns right-reduced version of F}

input: set of fds G

output: a right-reduced cover for G

Right-Reduce (G)

{

F  G;

for each fd X Y in G do

for each attribute A in Y do

if Member(F – {X Y}  {X  (Y- A)}, X  A)

then remove A from Y in X Y in F

return(F);

}

Algorithm Right-Reduce

COP 4710: Database Systems (Chapter 19) Page 60 Mark Llewellyn

• The algorithm below produces a reduced set of functional

dependencies.

Algorithm Reduce

Algorithm Reduce {returns reduced version of F}

input: set of fds G

output: a reduced cover for G

Reduce (G)

{

F  Right-Reduce(Left-Reduce(G));

remove all fds of the form X null from F

return(F);

}

Algorithm Reduce

If G contained a

redundant fd, X Y,

every attribute in Y

would be extraneous

and thus reduce to X

 null, so these

need to be removed.

COP 4710: Database Systems (Chapter 19) Page 61 Mark Llewellyn

• The order in which the reduction is done by algorithm

Reduce is important. The set of fds must be left-reduced

first and then right-reduced. The example below

illustrates what may happen if this order is violated.

Example:

Let G = {B  A , D  A , BA  D}

G is right-reduced but not left-reduced. If we left-reduce

G to produce F = {B  A , D  A , B  D}

We have F is left-reduced but not right-reduced!

B  A is extraneous on right side since B  D  A

Algorithm Reduce (cont.)

COP 4710: Database Systems (Chapter 19) Page 62 Mark Llewellyn

• A set of functional dependencies F is canonical if every

fd in F is of the form X  A and F is left-reduced and

non-redundant.

Example:

G = {A  BCE, AB  DE, BI  J}

a canonical cover for G is:

F = {A  B, A  C, A  D, A  E, BI  J}

Canonical Cover

COP 4710: Database Systems (Chapter 19) Page 63 Mark Llewellyn

• A set of functional dependencies F is minimal if

1. Every fd has a single attribute for its consequent.

2. F is non-redundant.

3. No fd X  A can be replaced with one of the form Y  A

where Y  X and still be an equivalent set, i.e., F is left-reduced.

Example:

G = {A  BCE, AB  DE, BI  J}

a minimal cover for G is:

F = {A  B, A  C, A  D, A  E, BI  J}

Minimum Cover

COP 4710: Database Systems (Chapter 19) Page 64 Mark Llewellyn

• The algorithm below produces a minimal cover for a set

of functional dependencies.

Algorithm MinCover

Algorithm MinCover {returns minimum cover for F}

input: set of fds F

output: a minimum cover for F

MinCover (F)

{

G  F;

replace each fd X  A1A2...An in G by n fds X  A1, X  A2,..., X  An

for each fd X  A in G do

if Member(G‒ {X  A}, X  A)

then G  G – {X  A}

endfor

for each remaining fd in G, X  A do

for each attribute B  X do

if Member([{G‒ {X  A}}  {(X‒B)  A}], (X‒B)  A)

then G  {G‒ {X  A}}  {(X‒B)  A}

endfor

return(G);

}

Algorithm MinCover

COP 4710: Database Systems (Chapter 19) Page 65 Mark Llewellyn

• If R is a relational schema with attributes A1,A2, ..., An

and a set of functional dependencies F where X ⊆
{A1,A2,...,An} then X is a key of R if:

1. X → A1A2...An F+, and

2. no proper subset Y ⊆ X gives Y → A1A2...An  F+.

• Basically, this definition means that you must attempt to

generate the closure of all possible subsets of the schema

of R and determine which sets produce all of the

attributes in the schema.

Determining the Keys of a Relation Schema

COP 4710: Database Systems (Chapter 19) Page 66 Mark Llewellyn

Let r = (C, T, H, R, S, G) with

F = {C  T, HR  C, HT  R, CS  G, HS  R}

Step 1: Generate (Ai)
+ for 1  i  n

C+ = {CT}, T+ = {T}, H+ = {H}

R+ = {R}, S+ = {S}, G+ = {G}

no single attribute is a key for R

Step 2: Generate (AiAj)
+ for 1  i  n, 1  j  n

(CT)+ = {C,T}, (CH)+ = {CHTR}, (CR)+ = {CRT}

(CS)+ = {CSGT}, (CG)+ = {CGT}, (TH)+ = {THRC}

(TR)+ = {TR}, (TS)+ = {TS}, (TG)+ = {TG}

(HR)+ = {HRCT}, (HS)+ = {HSRCTG}, (HG)+ = {HG}

(RS)+ = {RS}, (RG)+ = {RG}, (SG)+ = {SG}

The attribute set (HS) is a key for R

Determining Keys - Example

6
120

720

)!16(!1

!6

1

6













15
48

720

)!26(!2

!6

2

6













COP 4710: Database Systems (Chapter 19) Page 67 Mark Llewellyn

Step 3: Generate (AiAjAk)
+ for 1  i  n, 1  j  n, 1  k  n

(CTH)+ = {CTHR}, (CTR)+ = {CTR}

(CTS)+ = {CTSG}, (CTG)+ = {CTG}

(CHR)+ = {CHRT}, (CHS)+ = {CHSTRG}

(CHG)+ = {CHGTR}, (CRS)+ = {CRSTG}

(CRG)+ = {CRGT}, (CSG)+ = {CSGT}

(THR)+ = {THRC}, (THS)+ = {THSRCG}

(THG)+ = {THGRC}, (TRS)+ = {TRS}

(TRG)+ = {TRG}, (TSG)+ = {TSG}

(HRS)+ = {HRSCTG}, (HRG)+ = {HRGCT}

(HSG)+ = {HSGRCT}, (RSG)+ = {RSG}

Superkeys are shown in red.

Determining Keys - Example

20
36

720

)!36(!3

!6

3

6













COP 4710: Database Systems (Chapter 19) Page 68 Mark Llewellyn

Step 4: Generate (AiAjAkAr)
+ for 1  i  n, 1  j  n, 1  k  n,

1  r  n

(CTHR)+ = {CTHR}, (CTHS)+ = {CTHSRG}

(CTHG)+ = {CTHGR}, (CHRS)+ = {CHRSTG}

(CHRG)+ = {CHRGT}, (CRSG)+ = {CRSGT}

(THRS)+ = {THRSCG}, (THRG)+ = {THRGC}

(TRSG)+ = {TRSG}, (HRSG)+ = {HRSGCT}

(CTRS)+ = {CTRS}, (CTSG)+ = {CTSG}

(CSHG)+ = {CSHGTR}, (THSG)+ = {THSGRC}

(CTRG)+ = {CTRG}

Superkeys are shown in red.

Determining Keys - Example

15
48

720

)!46(!4

!6

4

6













COP 4710: Database Systems (Chapter 19) Page 69 Mark Llewellyn

Step 5: Generate (AiAjAkArAs)
+ for 1  i  n, 1  j  n, 1  k 

n, 1  r  n, 1  s  n

(CTHRS)+ = {CTHSRG}

(CTHRG)+ = {CTHGR}

(CTHSG)+ = {CTHSGR}

(CHRSG)+ = {CHRSGT}

(CTRSG)+ = {CTRSG}

(THRSG)+ = {THRSGC}

Superkeys are shown in red.

Determining Keys - Example

6
120

720

)!56(!5

!6

5

6













COP 4710: Database Systems (Chapter 19) Page 70 Mark Llewellyn

Step 6: Generate (AiAjAkArAsAt)
+ for 1  i  n, 1  j  n, 1  k

 n, 1  r  n, 1  s  n, 1  t  n

(CTHRSG)+ = {CTHSRG}

Superkeys are shown in red.

• In general, for 6 attributes we have:

Determining Keys - Example

1
720

720

)!66(!6

!6

6

6













cases6311520156
6

6

5

6

4

6

3

6

2

6

1

6























































Practice Problem: Find all the keys of R = (A,B,C,D) given F = {AB, BC}

COP 4710: Database Systems (Chapter 19) Page 71 Mark Llewellyn

• Normalization is a formal technique for analyzing

relations based on the primary key (or candidate key

attributes and functional dependencies.

• The technique involves a series of rules that can be used

to test individual relations so that a database can be

normalized to any degree..

• When a requirement is not met, the relation violating the

requirement is decomposed into a set of relations that

individually meet the requirements of normalization.

• Normalization is often executed as a series of steps.

Each step corresponds to a specific normal form that has

known properties.

Normalization Based on the Primary Key

COP 4710: Database Systems (Chapter 19) Page 72 Mark Llewellyn

Relationship Between Normal Forms
N1NF

1NF

2NF

3NF

BCNF

4NF

5NF

Higher Normal Forms

COP 4710: Database Systems (Chapter 19) Page 73 Mark Llewellyn

The Process Of Normalization

Table with multi-valued attributes N1NF

1NF

2NF

3NF

BCNF

4NF

5NF

Remove multi-valued attributes

Remove partial dependencies

Remove transitive dependencies

Remove remaining anomalies from FDs

Remove multi-valued dependencies

Remove remaining anomalies from MVDs

COP 4710: Database Systems (Chapter 19) Page 74 Mark Llewellyn

• For the relational model it is important to recognize that
it is only first normal form (1NF) that is critical in
creating relations. All the subsequent normal forms are
optional.

• However, to avoid the update anomalies that we
discussed earlier, it is normally recommended that the
database designer proceed to at least 3NF.

• As the figure on the previous page illustrates, some 1NF
relations are also in 2NF and some 2NF relations are also
in 3NF, and so on.

• As we proceed, we’ll look at the requirements for each
normal form and a decomposition technique to achieve
relation schemas in that normal form.

Normalization Requirements

COP 4710: Database Systems (Chapter 19) Page 75 Mark Llewellyn

• Non-first normal form relation are those relations in

which one or more of the attributes are non-atomic. In

other words, within a relation and within a single tuple

there is a multi-valued attribute.

• There are several important extensions to the relational

model in which N1NF relations are utilized. For the

most part these go beyond the scope of this course and

we will not discuss them in any significant detail.

Temporal relational databases and certain categories of

spatial databases fall into the N1NF category.

Non-First Normal Form (N1NF)

COP 4710: Database Systems (Chapter 19) Page 76 Mark Llewellyn

• A relation in which every attribute value is atomic is in

1NF.

• We have only considered 1NF relations for the most part

in this course.

• When dealing with multi-valued attributes at the

conceptual level, recall that in the conversion into the

relational model created a separate table for the multi-

valued attribute. (See Chapter 3 Notes, Pages 19-21)

First Normal Form (1NF)

COP 4710: Database Systems (Chapter 19) Page 77 Mark Llewellyn

• A key is a superkey with the additional property that the
removal of any attribute from the key will cause it to no longer
be a superkey. In other words, the key is minimal in the
number of attributes.

• The candidate key for a relation a set of minimal keys of the
relation schema.

• The primary key for a relation is a selected candidate key. All
of the remaining candidate keys (if any) become secondary
keys.

• A prime attribute is any attribute of the schema of a relation R
that is a member of any candidate key of R.

• A non-prime attribute is any attribute of R which is not a
member of any candidate key.

Some Additional Terminology

COP 4710: Database Systems (Chapter 19) Page 78 Mark Llewellyn

• Second normal form (2NF) is based on the concept

of a full functional dependency.

• A functional dependency X  Y is a full functional

dependency if the removal of any attribute A from X

causes the fd to no longer hold.

for any attribute AX, X-{A}  Y

• A functional dependency X  Y is a partial

functional dependency if some attribute A can be

removed from X and the fd still holds.

for any attribute AX, X-{A}  Y

Second Normal Form (2NF)

COP 4710: Database Systems (Chapter 19) Page 79 Mark Llewellyn

• A relation scheme R is in 2NF with respect to a set

of functional dependencies F if every non-prime

attribute is fully dependent on every key of R.

• Another way of stating this is: there does not exist a

non-prime attribute which is partially dependent on

any key of R. In other words, no non-prime attribute

is dependent on only a portion of the key of R.

Definition of Second Normal Form (2NF)

COP 4710: Database Systems (Chapter 19) Page 80 Mark Llewellyn

Given R = (A, D, P, G), F = {AD  PG, A  G} and

K = {AD}

Then R is not in 2NF because G is partially dependent on

the key AD since AD  G yet A  G.

Decompose R into:

R1 = (A, D, P) R2 = (A, G)

K1 = {AD} K2 = {A}

F1 = {AD  P} F2 = {A  G}

Example of Second Normal Form (2NF)

COP 4710: Database Systems (Chapter 19) Page 81 Mark Llewellyn

• Third Normal Form (3NF) is based on the concept of a

transitive dependency.

• Given a relation scheme R with a set of functional

dependencies F and subset X  R and an attribute A R.

A is said to be transitively dependent on X if there exists

Y  R with X  Y, Y X  X and Y  A and A 

XY.

• An alternative definition for a transitive dependency is: a

functional dependency X  Y in a relation scheme R is a

transitive dependency if there is a set of attributes Z  R

where Z is not a subset of any key of R and yet both X 

Z and Z  Y hold in F.

Third Normal Form (3NF)

COP 4710: Database Systems (Chapter 19) Page 82 Mark Llewellyn

• A relation scheme R is in 3NF with respect to a set of functional

dependencies F, if whenever X  A holds either: (1) X is a superkey

of R or (2) A is a prime attribute.

• Alternative definition: A relation scheme R is in 3NF with respect to

a set of functional dependencies F if no non-prime attribute is

transitively dependent on any key of R.

Example: Let R = (A, B, C, D)

K = {AB}, F = {AB  CD, C  D, D  C}

then R is not in 3NF since C  D holds and C is not a superkey of

R.

Alternatively, R is not in 3NF since AB  C and C  D and thus D

is a non-prime attribute which is transitively dependent on the key

AB.

Third Normal Form (3NF) (cont.)

COP 4710: Database Systems (Chapter 19) Page 83 Mark Llewellyn

• What does 3NF do for us? Consider the following

database:

assign(flight, day, pilot-id, pilot-name)

K = {flight day}

F = {pilot-id  pilot-name, pilot-name  pilot-id}

Why Third Normal Form?

flight day pilot-id pilot-name

112 Feb.11 317 Mark

112 Feb. 12 246 Kristi

114 Feb.13 317 Mark

COP 4710: Database Systems (Chapter 19) Page 84 Mark Llewellyn

Why Third Normal Form? (cont.)

flight day pilot-id pilot-name

112 Feb.11 317 Mark

112 Feb. 12 246 Kristi

114 Feb.13 317 Mark

112 Feb. 11 319 Mark

Since {flight day} is key, clearly {flight day}  pilot-name.

But in F we also know that pilot-name  pilot-id, and

we have that {flight day}  pilot-id.

Now suppose the highlighted tuple is added to this instance.

is added. The fd pilot-name  pilot-id is violated by this

insertion. A transitive dependency exists since: pilot-id 

pilot-name holds and pilot-id is not a superkey.

COP 4710: Database Systems (Chapter 19) Page 85 Mark Llewellyn

• Boyce-Codd Normal Form (BCNF) is a more stringent
form of 3NF.

• A relation scheme R is in Boyce-Codd Normal Form
with respect to a set of functional dependencies F if
whenever X  A hold and A ⊈ X, then X is a superkey
of R.

Example: Let R = (A, B, C)

F = {AB  C, C  A}

K =

R is not in BCNF since C  A holds and C is not a
superkey of R.

Boyce-Codd Normal Form (BCNF)

{AB}

COP 4710: Database Systems (Chapter 19) Page 86 Mark Llewellyn

• Notice that the only difference in the definitions of 3NF
and BCNF is that BCNF drops the allowance for A in X
 A to be prime.

• An interesting side note to BCNF is that Boyce and Codd
originally intended this normal form to be a simpler form
of 3NF. In other words, it was supposed to be between
2NF and 3NF. However, it was quickly proven to be a
more strict definition of 3NF and thus it wound up being
between 3NF and 4NF.

• In practice, most relational schemes that are in 3NF are
also in BCNF. Only if X  A holds in the schema where
X is not a superkey and A is prime, will the schema be in
3NF but not in BCNF.

Boyce-Codd Normal Form (BCNF) (cont.)

COP 4710: Database Systems (Chapter 19) Page 87 Mark Llewellyn

• The basic goal of relational database design should be to
ensure that every relation in the database is either in 3NF
or BCNF.

• 1NF and 2NF do not remove a sufficient number of the
update anomalies to make a significant difference,
whereas 3NF and BCNF eliminate most of the update
anomalies.

• As we’ve mentioned before, in addition to ensuring the
relation schemas are in either 3NF or BCNF, the designer
must also ensure that the decomposition of the original
database schema into the 3NF or BCNF schemas
guarantees that the decomposition have (1) the lossless
join property (also called a non-additive join property)
and (2) the functional dependencies are preserved across
the decomposition.

Moving Towards Relational Decomposition

COP 4710: Database Systems (Chapter 19) Page 88 Mark Llewellyn

• There are decomposition algorithms that will guarantee a
3NF decomposition which ensures both the lossless join
property and preservation of the functional dependencies.

• However, there is no algorithm which will guarantee a
BCNF decomposition which ensures both the lossless join
property and preserves the functional dependencies. There
is an algorithm that will guarantee BCNF and the lossless
join property, but this algorithm cannot guarantee that the
dependencies will be preserved.

• It is for this reason that many times, 3NF is as strong a
normal form as will be possible for a certain set of schemas,
since an attempt to force BCNF may result in the non-
preservation of the dependencies.

• In the next few pages we’ll look at these two properties
more closely.

Moving Towards Relational Decomposition (cont.)

COP 4710: Database Systems (Chapter 19) Page 89 Mark Llewellyn

• Whenever an update is made to the database, the DBMS
must be able to verify that the update will not result in an
illegal instance with respect to the functional
dependencies in F+.

• To check updates in an efficient manner the database
must be designed with a set of schemas which allows for
this verification to occur without necessitating join
operations.

• If an fd is “lost”, the only way to enforce the constraint
would be to effect a join of two or more relations in the
decomposition to get a “relation” that includes all of the
determinant and consequent attributes of the lost fd into a
single table, then verify that the dependency still holds
after the update occurs. Obviously, this requires too
much effort to be practical or efficient.

Preservation of the Functional Dependencies

COP 4710: Database Systems (Chapter 19) Page 90 Mark Llewellyn

• Informally, the preservation of the dependencies means
that if X  Y from F appears either explicitly in one of
the relational schemas in the decomposition scheme or
can be inferred from the dependencies that appear in
some relational schema within the decomposition
scheme, then the original set of dependencies would be
preserved on the decomposition scheme.

• It is important to note that what is required to preserve
the dependencies is not that every fd in F be explicitly
present in some relation schema in the decomposition,
but rather the union of all the dependencies that hold on
all of the individual relation schemas in the
decomposition be equivalent to F (recall what
equivalency means in this context).

Preservation of the Functional Dependencies (cont.)

COP 4710: Database Systems (Chapter 19) Page 91 Mark Llewellyn

• The projection of a set of functional

dependencies onto a set of attributes Z, denoted

F[Z] (also sometime as Z(F)), is the set of

functional dependencies X  Y in F+ such that

X  Y  Z.

• A decomposition scheme  = {R1, R2, …, Rm} is

dependency preserving with respect to a set of

fds F if the union of the projection of F onto each

Ri (1 i  m) in  is equivalent to F.

(F[R1]  F[R2]  …  F[Rm])+ = F+

Preservation of the Functional Dependencies (cont.)

COP 4710: Database Systems (Chapter 19) Page 92 Mark Llewellyn

• It is always possible to find a dependency

preserving decomposition scheme D with respect

to a set of fds F such that each relation schema in

D is in 3NF.

• In a few pages, we will see an algorithm that

guarantees a 3NF decomposition in which the

dependencies are preserved.

Preservation of the Functional Dependencies (cont.)

COP 4710: Database Systems (Chapter 19) Page 93 Mark Llewellyn

Algorithm for Testing the Preservation of Dependencies

Algorithm Preserve

// input: a decomposition D= (R1, R2, …, Rk), a set of fds F, an fd X  Y

// output: true if D preserves F, false otherwise

Preserve (D , F, X  Y)

Z = X;

while (changes to Z occur) do

for i = 1 to k do // there are k schemas in D

Z = Z  ((Z  Ri)
+  Ri)

endfor;

endwhile;

if Y  Z

then return true; // Z ⊨ X  Y

else return false;

end.

COP 4710: Database Systems (Chapter 19) Page 94 Mark Llewellyn

• The set Z which is computed is basically the

following:

• Note that G is not actually computed but merely

tested to see if G covers F. To test if G covers F

we need to consider each fd XY in F and

determine if contains Y.

• Thus, the technique is to compute without

having G available by repeatedly considering the

effect of closing F with respect to the projections

of F onto the various Ri.

How Algorithm Preserves Works

 
k

1i iRFG





GX


GX

COP 4710: Database Systems (Chapter 19) Page 95 Mark Llewellyn

Let R = (A, B, C, D)

F = {AB, BC, CD, DA}

D = {(AB), (BC), (CD)}

G = F[AB]  F[BC]  F[CD] Z = Z  ((Z  Ri)
+  Ri)

Test for each fd in F.

Test for AB

Z = A,

= {A}  ((A  AB)+  AB)

= {A}  ((A)+  AB)

= {A}  (ABCD  AB)

= {A}  {AB}

= {AB}

A Hugmongously Big Example

COP 4710: Database Systems (Chapter 19) Page 96 Mark Llewellyn

Z = {AB}

= {AB}  ((AB  BC)+  BC)

= {AB}  ((B)+  BC)

= {AB}  (BCDA  BC)

= {AB}  {BC}

= {ABC}

Z = {ABC}

= {ABC}  ((ABC  CD)+  CD)

= {ABC}  ((C)+  CD)

= {ABC}  (CDAB  CD)

= {ABC}  {CD}

= {ABCD}

G covers A B

A Hugmongously Big Example (cont.)

COP 4710: Database Systems (Chapter 19) Page 97 Mark Llewellyn

Test for BC
Z = B,

= {B}  ((B  AB)+  AB)
= {B}  ((B)+  AB)
= {B}  (BCDA  AB)
= {B}  {AB}
= {AB}

Z = {AB}
= {AB}  ((AB  BC)+  BC)
= {AB}  ((B)+  BC)
= {AB}  (BCDA  BC)
= {AB}  {BC}
= {ABC}

Z = {ABC}
= {ABC}  ((ABC  CD)+  CD)
= {ABC}  ((C)+  CD)
= {ABC}  (CDAB  CD)
= {ABC}  {CD}
= {ABC} So G covers B C

A Hugmongously Big Example (cont.)

COP 4710: Database Systems (Chapter 19) Page 98 Mark Llewellyn

Test for CD
Z = C,

= {C}  ((C  AB)+  AB)
= {C}  (()+  AB)
= {C}  ()
= {C}

Z = {C}
= {C}  ((C  BC)+  BC)
= {C}  ((C)+  BC)
= {C}  (CDAB  BC)
= {C}  {BC}
= {BC}

Z = {BC}
= {BC}  ((BC  CD)+  CD)
= {BC}  ((C)+  CD)
= {BC}  (CDAB  CD)
= {BC}  {CD}
= {BCD} So G covers C D

A Hugmongously Big Example (cont.)

COP 4710: Database Systems (Chapter 19) Page 99 Mark Llewellyn

Test for DA
Z = D,

= {D}  ((D  AB)+  AB)
= {D}  (()+  AB)
= {D}  ()
= {D}

Z = {D}
= {D}  ((D  BC)+  BC)
= {D}  (()+  BC)
= {D}  ()
= {D}

Z = {D}
= {D}  ((D  CD)+  CD)
= {D}  ((D)+  CD)
= {D}  (DABC  CD)
= {D}  {CD}
= {DC} Changes made to G so continue.

A Hugmongously Big Example (cont.)

COP 4710: Database Systems (Chapter 19) Page 100 Mark Llewellyn

Test for DA continues on a second pass through D.
Z = DC,

= {DC}  ((DC  AB)+  AB)
= {DC}  (()+  AB)
= {DC}  ()
= {DC}

Z = {DC}
= {DC}  ((DC  BC)+  BC)
= {DC}  ((C)+  BC)
= {D}  (CDAB  BC)
= {D}  (BC)
= {DBC}

Z = {DBC}
= {DBC}  ((DBC  CD)+  CD)
= {DBC}  ((CD)+  CD)
= {DBC}  (CDAB  CD)
= {DBC}  {CD}
= {DBC} Again changes made to G so continue.

A Hugmongously Big Example (cont.)

COP 4710: Database Systems (Chapter 19) Page 101 Mark Llewellyn

Test for DA continues on a third pass through D.

Z = DBC,

= {DBC}  ((DBC  AB)+  AB)

= {DBC}  ((B)+  AB)

= {DBC}  (BCDA  AB)

= {DBC}  (AB)

= {DBCA}

Finally, we’ve included every attribute in R.

Thus, G covers D A.

Thus, D preserves the functional dependencies in F.

A Hugmongously Big Example (cont.)

Practice Problem: Determine if D preserves the dependencies in F given:

R = (C, S, Z)

F = {CS Z, ZC}

D = {(SZ), (CZ)} Solution on next page.

COP 4710: Database Systems (Chapter 19) Page 102 Mark Llewellyn

Let R = (C, S, Z)
F = {CS Z, ZC}
D = {(SZ), (CZ)}

G = F[SZ]  F[CZ] Z = Z  ((Z  Ri)
+  Ri)

Test for each fd in F.
Test for CSZ

Z = CS,
= {CS}  ((CS  SZ)+  SZ)
= {CS}  ((S)+  SZ)
= {CS}  (S)
= {CS}
= {CS}  ((CS  CZ)+  CZ)
= {CS}  ((C)+  CZ)
= {CS}  (C  CZ)
= {CS}  (C)
= {CS} thus, CS Z is not preserved.

Practice Problem Solution

COP 4710: Database Systems (Chapter 19) Page 103 Mark Llewellyn

Algorithm for Testing for the Lossless Join Property

Algorithm Lossless

// input: a relation schema R= (A1, A2, …, An), a set of fds F, a decomposition

// scheme D = {R1, R2, ..., Rk)

// output: true if D has the lossless join property, false otherwise

Lossless (R, F, D)

Create a matrix of n columns and k rows where column y corresponds to attribute

Ay (1  y  n) and row x corresponds to relation schema Rx (1  x  k). Call this matrix T.

Fill the matrix according to: in Txy put the symbol ay if Ay is in Rx and the symbol bxy if not.

Repeatedly “consider” each fd X  Y in F until no more changes can be made to T.

Each time an fd is considered, look for rows in T which agree on all of the columns

corresponding to the attributes in X. Equate all of the rows which agree in the X

value on the Y values according to: If any of the Y symbols is ay make them all ay,

if none of them are ay equate them arbitrarily to one of the bxy values.

If after making all possible changes to T one of the rows has become a1a2...an

then return yes, otherwise return no.

end.

COP 4710: Database Systems (Chapter 19) Page 104 Mark Llewellyn

Let R = (A, B, C, D, E)

F = {AC, BC, CD, DEC, CEA}

D = {(AD), (AB), (BE), (CDE), (AE)}

initial matrix T:

Testing for a Lossless Join - Example

A B C D E

(AD) a1 b12 b13 a4 b15

(AB) a1 a2 b23 b24 b25

(BE) b31 a2 b33 b34 a5

(CDE) b41 b42 a3 a4 a5

(AE) a1 b52 b53 b54 a5

COP 4710: Database Systems (Chapter 19) Page 105 Mark Llewellyn

Consider each fd in F repeatedly until no changes are made to the matrix:

AC: equates b13, b23, b53.. Arbitrarily we’ll set them all to b13 as shown.

Testing for a Lossless Join – Example (cont.)

A B C D E

(AD) a1 b12 b13 a4 b15

(AB) a1 a2 b13 b24 b25

(BE) b31 a2 b33 b34 a5

(CDE) b41 b42 a3 a4 a5

(AE) a1 b52 b13 b54 a5

COP 4710: Database Systems (Chapter 19) Page 106 Mark Llewellyn

Consider each fd in F repeatedly until no changes are made to the matrix:

BC: equates b13, b33.. We’ll set them all to b13 as shown.

Testing for a Lossless Join – Example (cont.)

A B C D E

(AD) a1 b12 b13 a4 b15

(AB) a1 a2 b13 b24 b25

(BE) b31 a2 b13 b34 a5

(CDE) b41 b42 a3 a4 a5

(AE) a1 b52 b13 b54 a5

COP 4710: Database Systems (Chapter 19) Page 107 Mark Llewellyn

Consider each fd in F repeatedly until no changes are made to the matrix:

CD: equates a4, b24, b34, b54.. We set them all to a4 as shown.

Testing for a Lossless Join – Example (cont.)

A B C D E

(AD) a1 b12 b13 a4 b15

(AB) a1 a2 b13 a4 b25

(BE) b31 a2 b13 a4 a5

(CDE) b41 b42 a3 a4 a5

(AE) a1 b52 b13 a4 a5

COP 4710: Database Systems (Chapter 19) Page 108 Mark Llewellyn

Consider each fd in F repeatedly until no changes are made to the matrix:

DEC: equates a3, b13.. We set them both to a3 as shown.

Testing for a Lossless Join – Example (cont.)

A B C D E

(AD) a1 b12 b13 a4 b15

(AB) a1 a2 b13 a4 b25

(BE) b31 a2 a3 a4 a5

(CDE) b41 b42 a3 a4 a5

(AE) a1 b52 a3 a4 a5

COP 4710: Database Systems (Chapter 19) Page 109 Mark Llewellyn

Consider each fd in F repeatedly until no changes are made to the matrix:

CEA: equates b31, b41, a1.. We set them all to a1 as shown.

Testing for a Lossless Join – Example (cont.)

A B C D E

(AD) a1 b12 b13 a4 b15

(AB) a1 a2 b13 a4 b25

(BE) a1 a2 a3 a4 a5

(CDE) a1 b42 a3 a4 a5

(AE) a1 b52 a3 a4 a5

COP 4710: Database Systems (Chapter 19) Page 110 Mark Llewellyn

First pass through F is now complete. However row (BE) has become all

ais, so stop and return true, this decomposition has the lossless join

property.

Testing for a Lossless Join – Example (cont.)

A B C D E

(AD) a1 b12 b13 a4 b15

(AB) a1 a2 b13 a4 b25

(BE) a1 a2 a3 a4 a5

(CDE) a1 b42 a3 a4 a5

(AE) a1 b52 a3 a4 a5

COP 4710: Database Systems (Chapter 19) Page 111 Mark Llewellyn

Algorithm #1 for Producing a 3NF Decomposition

Algorithm 3NF.1

// input: a relation schema R= (A1, A2, …, An), a set of fds F, a set of candidate keys K.

// output: a 3NF decomposition of R, called D, which has the lossless join property and the

// functional dependencies are preserved.

3NF.1 (R, F, K)

a = 0;

for each fd X  Y in F do

a = a +1;

Ra = XY;

endfor

if [none of the schemes Rb (1  b  a) contains a candidate key of R] then

a = a + 1;

Ra = any candidate key of R

endif

if [] then //there are missing attributes

Ra+1 =

return D = {R1, R2, ..., Ra+1}

end.

RR
a

1b b 


a

1b bRR




COP 4710: Database Systems (Chapter 19) Page 112 Mark Llewellyn

Let R = (A, B, C, D, E)

K = {AB, AC}

F = {ABCDE, ACBDE, BC, CB, CD, BE}

Step 1: D = {(ABCDE), (ACBDE), (BC), (CB), (CD), (BE)}

Reduce to: D = {(ABCDE), (BC), (CD), (BE)}

Step 2: Does D contain a candidate key for R?

Yes, in (ABCDE)

Step 3: Are all the attributes of R contained in D?

Yes.

Return D as: {(ABCDE), (BC), (CD), (BE)}

Example – Using Algorithm 3NF.1

COP 4710: Database Systems (Chapter 19) Page 113 Mark Llewellyn

Algorithm #2 for Producing a 3NF Decomposition

Algorithm 3NF.2

// input: a relation schema R= (A1, A2, …, An), a set of fds F, a set of candidate keys K.

// output: a 3NF decomposition of R, called D, which is not guaranteed to have either the

// lossless join property or to preserve the functional dependencies in F.

// This algorithm is based on the removal of transitive dependencies.

3NF.2 (R, F, K)

do

if [K  Y  A where A is non-prime and not an element of either K or Y] then

decompose R into: R1 = {R – A} with K1 = {K} and R2 = {YA} with K2 = {Y}.

repeat until no transitive dependencies exist in any schema

D = union of all 3NF schemas produced above.

test for lossless join

test for preservation of the functional dependencies

end.

COP 4710: Database Systems (Chapter 19) Page 114 Mark Llewellyn

Let R = (A, B, C, D, E)

K = {AB, AC}

F = {ABCDE, ACBDE, BC, CB, CD, BE}

Step 1: R not in 3NF since AB  C  D

Decompose to: R1 = (A, B, C, E) with K1 = K = {AB, AC}

R2 = (C, D) with K2 = {C}

Step 2: R2 in 3NF. R1 not in 3NF since AB  B  E

Decompose R1 to: R11 = (A, B, C) with K11= K1 = K = {AB, AC}

R12 = (B, E) with K12 = {B}

Step 3: R2, R11, and R12 are all in 3NF

Step 4: Test for the lossless join property (see next page).

Example – Using Algorithm 3NF.2

COP 4710: Database Systems (Chapter 19) Page 115 Mark Llewellyn

ABCDE: (1st time: equates nothing)

ACBDE: (1st time: equates nothing)

BC: (1st time: equates a3 & b33)

CB: (1st time: equates a2 & b12)

CD: (1st time: equates b14, b24, b34) – stop second row becomes all a’s

BE: (1st time: equates a5, b15, b25)

Decomposition has the lossless join property.

Step 4: Checking for a Lossless Join in the Decomposition

A B C D E

(CD) b11 a2 a3 a4 b15

(ABC) a1 a2 a3 a4 b15

(BE) b31 a2 a3 a4 a5

COP 4710: Database Systems (Chapter 19) Page 116 Mark Llewellyn

Let R = (A, B, C, D, E)
F = {ABCDE, ACBDE, BC, CB, CD, BE}}
D = {(CD), (ABC), (BE)}

G = F[CD]  F[ABC]  F[BE] Z = Z  ((Z  Ri)
+  Ri)

Test for ABCDE
Z = AB,

= {AB}  ((AB  CD)+  CD)
= {AB}  (()+  CD)
= {AB}  (  CD)
= {AB}  ()
= {AB}
= {AB}  ((AB  ABC)+  ABC)
= {AB}  ((AB)+  ABC)
= {AB}  (ABCDE  ABC)
= {AB}  (ABC)
= {ABC}
= {ABC}  ((ABC  BE)+  BE)
= {ABC}  ((B)+  BE)
= {ABC}  (BCDE  BE)
= {ABC}  (BE)
= {ABCE}

Step 5: Testing the Preservation of the Functional Dependencies

COP 4710: Database Systems (Chapter 19) Page 117 Mark Llewellyn

Test for ABCDE continues
Z = {ABCE}  ((ABCE  CD)+  CD)

= {ABCE}  ((C)+  CD)
= {ABCE}  (CBDE  CD)
= {ABCE}  (CD)
= {ABCDE} thus, ABCDE is preserved

Test for ACBDE
Z = AC

= {AC}  ((AC  CD)+  CD)
= {AC}  ((C)+  CD)
= {AC}  (CBDE  CD)
= {AC}  (CD)
= {ACD}
= {ACD}  ((ACD  ABC)+  ABC)
= {ACD}  ((AC)+  ABC)
= {ACD}  (ACBDE  ABC)
= {ACD}  (ABC)
= {ABCD}

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)

COP 4710: Database Systems (Chapter 19) Page 118 Mark Llewellyn

Test for ACBDE continues
Z = {ABCD}  ((ABCD  BE)+  BE)

= {ABCD}  ((B)+  BE)
= {ABCD}  (BCDE  BE)
= {ABCD}  (BE)
= {ABCDE} thus, ACBDE is preserved

Test for BC
Z = B

= {B}  ((B  CD)+  CD)
= {B}  ((C)+  CD)
= {B}  (CBDE  CD)
= {B}  (CD)
= {BCD} thus BC is preserved

Test for CB
Z = C

= {C}  ((C  CD)+  CD)
= {C}  ((C)+  CD)
= {C}  (CBDE  CD)
= {C}  (CD)
= {CD}

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)

COP 4710: Database Systems (Chapter 19) Page 119 Mark Llewellyn

Test for CB continues
Z = {CD}  ((CD  ABC)+  ABC)

= {CD}  ((C)+  ABC)
= {CD}  (CBDE  ABC)
= {CD}  (BC)
= {BCD} thus, CB is preserved

Test for CD
Z = C

= {C}  ((C  CD)+  CD)
= {C}  ((C)+  CD)
= {C}  (CBDE  CD)
= {C}  (CD)
= {CD} thus CD is preserved

Test for BE
Z = B

= {B}  ((B  CD)+  CD)
= {B}  (()+  CD)
= {B}  ()
= {B}

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)

COP 4710: Database Systems (Chapter 19) Page 120 Mark Llewellyn

Test for BE continues
Z = {B}  ((B  ABC)+  ABC)

= {B}  ((B)+  ABC)
= {B}  (BCDE  ABC)
= {BC}  (BC)
= {BC}

Z = {BC}
= {BC}  ((BC  ABC)+  ABC)
= {BC}  ((C)+  ABC)
= {BC}  (CBDE  ABC)
= {BC}  (BC)
= {BC}

Z = {BC}
= {BC}  ((BC  BE)+  BE)
= {BC}  ((B)+  BE)
= {BC}  (BCDE  BE)
= {BC}  (BE)
= {BCE} thus, B E is preserved.

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)

COP 4710: Database Systems (Chapter 19) Page 121 Mark Llewellyn

• Why would you use algorithm 3NF.2 rather than

algorithm 3NF.1 when you know that algorithm 3NF.1

will guarantee that both the lossless join property and the

preservation of the functional dependencies?

• The answer is that algorithm 3NF.2 will typically

produce fewer relational schemas than will algorithm

3NF.1. Although both the lossless join and dependency

preservation properties must be independently tested

when using algorithm 3NF.2.

Why Use 3NF.2 Rather Than 3NF.1

COP 4710: Database Systems (Chapter 19) Page 122 Mark Llewellyn

Algorithm #3 for Producing a 3NF Decomposition

Algorithm 3NF.3

// input: a relation schema R= (A1, A2, …, An), a set of fds F.

// output: a 3NF decomposition of R, called D, which is guaranteed to have both the

// lossless join property and to preserve the functional dependencies in F.

// This algorithm is based on the minimal cover for F (see page 46).

3NF.3 (R, F)

find a minimal cover for F, call this cover G (see page 46 for algorithm)

for each determinant X that appears in G do

create a relation schema { X  A1  A2  ...  Am} where Ai (1  i  m) represents

all the consequents of fds in G with determinant X.

place all remaining attributes, if any, in a single schema.

if none of the schemas contains a key for R, create an additional schema which

contains any candidate key for R.

end.

COP 4710: Database Systems (Chapter 19) Page 123 Mark Llewellyn

• Algorithm 3NF.3 is very similar to algorithm 3NF.1,

differing only in how the schemas of the decomposition

scheme are created.

– In algorithm 3NF.1, the schemas are created directly from F.

– In algorithm 3NF.3, the schemas are created from a minimal

cover for F.

• In general, algorithm 3NF.3 should generate fewer

relation schemas than algorithm 3NF.1.

Algorithm 3NF.3

COP 4710: Database Systems (Chapter 19) Page 124 Mark Llewellyn

• The algorithm given on page 75 for testing the preservation of a set

of functional dependencies on a decomposition scheme is fairly

efficient for computation, but somewhat tedious to do by hand.

• On the next page is an example solving the same problem that we did

in the example on page 77, utilizing a different technique which is

based on the concept of covers.

• Given D, R, and F, if D = {R1, R2, ..., Rn) then

G = F[R1]  F[R2]  F[R3]  ...  F[Rn] and if every

functional dependency in F is implied by G, then G covers F.

• The technique is to generate that portion of G+ that allows us to

know if G covers F.

Another Technique for Testing the

Preservation of Dependencies

COP 4710: Database Systems (Chapter 19) Page 125 Mark Llewellyn

Let R = (A, B, C, D)

F = {AB, BC, CD, DA}

D = {(AB), (BC), (CD)}

G = F[AB]  F[BC]  F[CD]

Projection onto schema (AB)

F[AB] = A+  B+  (AB)+

= {ABCD}  {ABCD}  {ABCD}

apply projection: = {AB}  {AB}  {AB} = {AB}, AB is covered

Projection onto schema (BC)

F[BC] = B+  C+  (BC)+

= {BCDA}  {CDAB}  {BCDA}

apply projection: = {BC}  {BC}  {BC} = {BC}, CC is covered

A Hugmongously Big Example Using Different Technique

COP 4710: Database Systems (Chapter 19) Page 126 Mark Llewellyn

Projection onto schema (CD)

F[CD] = C+  D+  (CD)+

= {CDAB}  {DABC}  {CDAB}

apply projection: = {CD}  {CD}  {CD} = {CD}, CD is covered

• Thus, the projections have covered every functional dependency in F

except D  A. So, now the question becomes does G logically

imply D  A?

• Generate D+(with respect to G) and if A is in this closure the answer

is yes.

Therefore, G ⊨ D  A

A Hugmongously Big Example Using Different Technique

(cont.)

}A,B,C,D{DG 

COP 4710: Database Systems (Chapter 19) Page 127 Mark Llewellyn

• Functional dependencies are the most common and important type of
constraint in relational database design theory.

• However, there are situations in which the constraints that hold on a
relation cannot be expressed as a functional dependency.

• Multi-valued dependencies are related to 1NF. Recall that 1NF
simply means that all attribute values in a relation are atomic, which
means that a tuple cannot have a set of values for some particular
attribute.

• If we have a situation in which two or more multi-valued
independent attributes appear in the same relation schema, then we’ll
need to repeat every value of one of the attributes with every value of
the other attribute to keep the relation instance consistent and to
maintain the independence among the attributes involved.

• Basically, whenever two independent 1:M relationships A:B and A:C
occur in the same relation, a multi-valued dependency may occur.

Multi-valued Dependencies and Fourth Normal Form

COP 4710: Database Systems (Chapter 19) Page 128 Mark Llewellyn

• Consider the following situation of a N1NF relation.

Multi-valued Dependencies (cont.)

name classes vehicles

Mark
COP 4710

COP 4610

Mercedes E350

Ford F350

Kristy

COP 3330

CDA 3103

COT 4810

Mercedes E500

Porsche Carrera

COP 4710: Database Systems (Chapter 19) Page 129 Mark Llewellyn

• Converting the N1NF relation to a 1NF relation.

Multi-valued Dependencies (cont.)

name classes vehicles

Mark COP 4710 Mercedes E350

Mark COP 4710 Ford F350

Mark COP 4610 Mercedes E350

Mark COP 4610 Ford F350

Kristy COP 3330 Mercedes E500

Kristy CDA 3103 Mercedes E500

Kristy COT 4810 Mercedes E500

Kristy COP 3330 Porsche Carrera

Kristy CDA 3103 Porsche Carrera

Kristy COT 4810 Porsche Carrera

COP 4710: Database Systems (Chapter 19) Page 130 Mark Llewellyn

• Basically, a multi-valued dependency is an assertion that

two attributes or sets of attributes are independent of one

another.

• This is a generalization of the notion of a functional

dependency, in the sense that every fd implies a

corresponding multi-valued dependency.

• However, there are certain situations involving

independence of attributes that cannot be explained as

functional dependencies.

• There are situations in which a relational schema may be

in BCNF, yet the relation exhibits a kind of redundancy

that is not related to functional dependencies.

Multi-valued Dependencies (cont.)

COP 4710: Database Systems (Chapter 19) Page 131 Mark Llewellyn

• The most common source of redundancy in BCNF

schemas is an attempt to put two or more M:M

relationships in a single relation.

Multi-valued Dependencies (cont.)

name city classes vehicles

Mark Orlando COP 4710 Mercedes E350

Mark Orlando COP 4710 Ford F350

Mark Orlando COP 4610 Mercedes E350

Mark Orlando COP 4610 Ford F350

Kristy Milan COP 3502 Mercedes E500

Kristy Milan CDA 3103 Mercedes E500

Kristy Milan COT 4810 Mercedes E500

Kristy Milan COP 3502 Ford F350

Kristy Milan CDA 3103 Ford F350

Kristy Milan COT 4810 Ford F350

COP 4710: Database Systems (Chapter 19) Page 132 Mark Llewellyn

• Focusing on the relation on the previous page, notice that
there is no reason to associate a given class with a given
vehicle and not another vehicle.

• To express the fact that classes and vehicles are
independent properties of a person, we have each class
appear with each class.

• Clearly, there is redundancy in this relation, but this
relation does not violate BCNF. In fact there are no non-
trivial functional dependencies at all in this schema.

• We know from our earlier discussions of normal forms
based on functional dependencies that redundancies were
removed, yet here is a schema in BCNF that clearly
contains redundant information.

Multi-valued Dependencies (cont.)

COP 4710: Database Systems (Chapter 19) Page 133 Mark Llewellyn

• For example, in this relation, attribute city is not
functionally determined by any of the other three
attributes.

• Thus the fd: name class vehicle  city does not hold
for this schema because we could have two persons with
the same name, enrolled in the same class, and drive the
same type of vehicle.

• You should verify that none of the four attributes in
functionally determined by the other three. Which means
that there are no non-trivial functional dependencies that
hold on this relation schema.

• Thus, all four attributes form the only key and this means
that the relation is in BCNF, yet clearly is redundant.

Multi-valued Dependencies (cont.)

COP 4710: Database Systems (Chapter 19) Page 134 Mark Llewellyn

• A multi-valued dependency (mvd) is a statement about some

relation R that when you fix the values for one set of attributes,

then the values in certain other attributes are independent of the

values of all the other attributes in the relation.

• More precisely, we have the mvd

A1A2...An ↠ B1B2...Bm

holds for a relation R if when we restrict ourselves to the tuples

of R that have particular values for each of the attributes among

the A’s, then the set of values we find among the B’s is

independent of the set of values we find among the attributes of

R that are not among the A’s or B’s.

Multi-valued Dependencies (cont.)

COP 4710: Database Systems (Chapter 19) Page 135 Mark Llewellyn

• Even more precisely, a mvd holds if:

For each pair of tuples t and u of relation R that agree on

all the A’s, we can find in R some tuple v that agrees:

1. With both t and u on the A’s

2. With t on the B’s

3. With u on all attributes of R that are not among the A’s or B’s.

– Note that we can use this rule with t and u interchanged, to infer

the existence of a fourth tuple w that agrees with u on the B’s

and with t on the other attributes. As a consequence, for any

fixed values of the A’s, the associated values of the B’s and the

other attributes appear in all possible combinations in different

tuples.

Multi-valued Dependencies (cont.)

COP 4710: Database Systems (Chapter 19) Page 136 Mark Llewellyn

Relationship of Tuple v to Tuple t When mvd Exists

a1 b1 c1

a1 b1 c2

a1 b2 c2

A’s B’s others

tuple t

tuple v

tuple u

A multi-valued dependency guarantees that tuple v exists

COP 4710: Database Systems (Chapter 19) Page 137 Mark Llewellyn

• In general, we can assume that the A’s and B’s (left side

and right side) of a mvd are disjoint.

• As with functional dependencies, it is permissible to add

some of the A’s to the right side.

• Unlike, functional dependencies where a set of attributes

on the right side was a short-hand notation for a set of fds

with single attribute right sides, with mvds, we must deal

only with sets of attributes on the right side as it is not

always possible to break the right side of mvds into

single attributes.

Multi-valued Dependencies (cont.)

COP 4710: Database Systems (Chapter 19) Page 138 Mark Llewellyn

• Consider the following relation instance.

• The mvd name ↠ street city holds on this relation.

– That is, for each star’s name, the set of addresses appears in conjunction

with each of the star’s movies.

Example: Multi-valued Dependencies

name street city title year

C. Fisher 123 Maple Street Hollywood Star Wars 1977

C. Fisher 5 Locust Lane Malibu Star Wars 1977

C. Fisher 123 Maple Street Hollywood Empire Strikes Back 1980

C. Fisher 5 Locust Lane Malibu Empire Strikes Back 1980

C. Fisher 123 Maple Street Hollywood Return of the Jedi 1983

C. Fisher 5 Locust Lane Malibu Return of the Jedi 1983

COP 4710: Database Systems (Chapter 19) Page 139 Mark Llewellyn

• For an example of how the formal definition of this mvd applies,

consider the first and fourth tuples from the previous relation

instance.

• If we let the first tuple be t and the second tuple be u, then the mvd

asserts that we must also find in R the tuple that has name C. Fisher,

a street and city that agree with the first tuple, and other attributes

(title and year) that agree with the second tuple. There is indeed such

a tuple (the third tuple in the original instance).

Example: Multi-valued Dependencies (cont.)

name street city title year

C. Fisher 123 Maple Street Hollywood Star Wars 1977

C. Fisher 5 Locust Lane Malibu Empire Strikes Back 1980

name street city title year

C. Fisher 123 Maple Street Hollywood Empire Strikes Back 1980

COP 4710: Database Systems (Chapter 19) Page 140 Mark Llewellyn

• Similarly, we could let t be the second tuple below and u be the first

tuple below (reversed from the previous page). Then the mvd tells

us that there is a tuple of R that agrees with the second tuple in

attributes name, street, and city with the first tuple in attributes

name, title, and year.

• There is indeed such a tuple (the second tuple in the original

instance).

Example: Multi-valued Dependencies (cont.)

name street city title year

C. Fisher 123 Maple Street Hollywood Star Wars 1977

C. Fisher 5 Locust Lane Malibu Empire Strikes Back 1980

name street city title year

C. Fisher 5 Locust Lane Malibu Star Wars 1977

COP 4710: Database Systems (Chapter 19) Page 141 Mark Llewellyn

• There are a number of inference rules that deal with mvds
that are similar to the inference rules for functional
dependencies.

1. Trivial multi-valued dependencies:

If A1A2...An ↠ B1B2...Bm holds for some relation, then

so does A1A2...An↠ C1C2...Ck where the C’s are the B’s

plus one or more of the A’s.

Conversely, we can also remove attributes from the B’s if

they are among the A’s and infer the mvd A1A2...An ↠
D1D2...Dr if the D’s are those B’s that are not among the
A’s.

Reasoning about Multi-valued Dependencies

COP 4710: Database Systems (Chapter 19) Page 142 Mark Llewellyn

2. Transitive rule for multi-valued dependencies:

If A1A2...An ↠ B1B2...Bm and B1B2...Bm ↠ C1C2...Ck

both hold for some relation, then so does A1A2...An ↠
C1C2...Ck. However, any C’s that are also B’s must be

deleted from the right side.

• mvds do not obey the additivity/projectivity rules as do

functional dependencies.

Reasoning about Multi-valued Dependencies

COP 4710: Database Systems (Chapter 19) Page 143 Mark Llewellyn

• Consider the same relation schema as before, where the

mvd name ↠ street city held. If the projectivity

(splitting) rule held we would expect that

name ↠ street would also be true. This mvd states

that each star’s street addresses are independent of the

other attributes (including city). However, that statement

is false. The first two tuples in the relation instance

indicate that this is not true.

Reasoning about Multi-valued Dependencies

name street city title year

C. Fisher 123 Maple Street Hollywood Star Wars 1977

C. Fisher 5 Locust Lane Malibu Star Wars 1977

COP 4710: Database Systems (Chapter 19) Page 144 Mark Llewellyn

• This hypothetical mvd name↠ street, if it held would

allow us to infer that the tuples with the streets

interchanged would be in the relation instance. However,

these tuples are not there because the home at 5 Locust

Lane is in Malibu and not Hollywood.

Reasoning about Multi-valued Dependencies

name street city title year

C. Fisher 5 Locust Lane Hollywood Star Wars 1977

C. Fisher 123 Maple Street Malibu Star Wars 1977

invalid tuples that cannot exist

COP 4710: Database Systems (Chapter 19) Page 145 Mark Llewellyn

• There are however, several new inference rules that apply only to
multi-valued dependencies.

• First, every fd is a mvd. That is, if A1A2...An  B1B2...Bm holds for

some relation, then so does A1A2...An↠ B1B2...Bm hold.

• Second, complementation has no fd counterpart. The

complementation rule states: if A1A2...An↠ B1B2...Bm is a mvd that

holds on some relation R, then R also satisfies A1A2...An ↠
C1C2...Ck , where the C’s are all attributes of R that are not included
in the A’s or B’s.

– Thus, if name ↠ street city holds, the complementation rule states

that name ↠ title year also holds, because street and city are not

mentioned in the first mvd. The inferred mvd intuitively means that
each star has a set of movies that they appeared in, which are
independent of their address.

Reasoning about Multi-valued Dependencies

COP 4710: Database Systems (Chapter 19) Page 146 Mark Llewellyn

• The redundancy that we’ve seen in the relation instances

in this section of the notes are caused by the existence of

multi-valued dependencies.

• As we did with functional dependencies, we can use

multi-valued dependencies and a different decomposition

algorithm to produce a stronger normal form which is

based not on functional dependencies but the multi-

valued dependencies.

• Fourth Normal Form (4NF) eliminates all non-trivial

multi-valued dependencies (as are all fds that violate

BCNF). The resulting decomposition scheme has neither

the redundancy from fds nor redundancy from mvds.

Fourth Normal Form

COP 4710: Database Systems (Chapter 19) Page 147 Mark Llewellyn

• A mvd A1A2...An ↠ B1B2...Bm for a relation scheme R is

non-trivial if:

1. None of the B’s is among the A’s.

2. Not all of the attributes of R are among the A’s and B’s.

• 4NF is essentially the BCNF condition, but applied to

mvds instead of fds.

• Formally, a relation scheme R is in 4NF if whenever

A1A2...An ↠ B1B2...Bm is a non-trivial mvd, {A1A2...An}

is a superkey of R.

Fourth Normal Form (cont.)

COP 4710: Database Systems (Chapter 19) Page 148 Mark Llewellyn

• The example relation scheme that we have been dealing

with is not in 4NF because name ↠ street city is a

non-trivial mvd, yet name by itself is not a superkey. In

fact, for this relation the only key is all the attributes.

• 4NF is truly a generalization of BCNF. Since every fd is

a mvd, every BCNF violation is also a 4NF violation. In

other words, every relation scheme that is in 4NF is

therefore in BCNF.

• However, there are some relation that are in BCNF but

not in 4NF. The relation instance we have been using in

this section of notes is a case in point. It is clearly in

BCNF, yet as we just illustrated, it is not in 4NF.

Fourth Normal Form (cont.)

COP 4710: Database Systems (Chapter 19) Page 149 Mark Llewellyn

• The 4NF decomposition algorithm is analogous to the

3NF and BCNF decomposition algorithm:

• Find a 4NF violation, say A1A2...An↠ B1B2...Bm where

{A1A2...An} is not a superkey. Note that this mvd could

be a true mvd or it could be derived from the

corresponding fd A1A2...An  B1B2...Bm , since every fd

is an mvd. Then break the schema for R into two

schemas where: (1) the first schema contains all the A’s

and B’s and the second schema contains the A’s and all

the attributes of R that are not among the A’s or B’s.

Decomposition into Fourth Normal Form

COP 4710: Database Systems (Chapter 19) Page 150 Mark Llewellyn

• Using our previous example relation that we now know is
not in 4NF, let’s decompose into a relation schema that is
in 4NF.

• We know that name ↠ street city is a 4NF violation.

The original schema R (5 attributes) will be replaced by
one schema that contains only the three attributes from
the mvd above, and a second schema that consists of the
left side of the above mvd plus the attributes that do not
appear in this mvd, which are the attributes title, and
year.

R1 = {name, street, city}

R2 = {name, title, year}

Decomposition into Fourth Normal Form (cont.)

COP 4710: Database Systems (Chapter 19) Page 151 Mark Llewellyn

R1 = {name, street, city} R2 = {name, title, year}

• In each of these schema there are no non-trivial mvds or

fds, so they are both in 4NF. Notice that in the relation

scheme R1, the mvd name ↠ street city is now trivial

since it involves every attribute. Likewise, in R2, the

mvd name↠ title year is also trivial.

Decomposition into Fourth Normal Form (cont.)

COP 4710: Database Systems (Chapter 19) Page 152 Mark Llewellyn

Summary of Normal Forms

Property 3NF BCNF 4NF

Eliminates redundancy

due to functional

dependencies

most yes yes

Eliminates redundancy

due to multi-valued

dependencies

no no yes

Preserves functional

dependencies
yes maybe maybe

Preserves multi-valued

dependencies
maybe maybe maybe

Has the lossless join

property
yes yes yes

